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The skew bracoid

Definition (M-L and Truman, 2024)

A skew bracoid is a quintuple (G , ◦,N,+,⊙) with (G , ◦) and (N,+)

groups and ⊙ a transitive action of G on N satisfying

g ⊙ (η + µ) = (g ⊙ η)− (g ⊙ eN) + (g ⊙ µ) (1)

for all g ∈ G and all η, µ ∈ N.

We refer to

(1) as the skew bracoid relation;

(G , ◦) as the acting or multiplicative group;

and (N,+) as the additive group, though we do not assume + is

abelian (and do not always write it additively).

We will frequently write (G ,N) for (G , ◦,N,+,⊙).
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Examples

Examples

Recall that a skew brace is a triple (G ,+, ◦) with (G ,+) and (G , ◦)
groups and

g ◦ (h + h′) = g ◦ h − g + g ◦ h′,

for all g , h, h′ ∈ G . Any skew brace (G ,+, ◦) can be thought of as a

skew bracoid (G , ◦,G ,+,⊙) with g ⊙ h := g ◦ h.

Let d , n ∈ N such that d |n. Take N = ⟨η⟩ ∼= Cd and

G = ⟨r , s | rn = s2 = e, srs−1 = r−1⟩ ∼= Dn. Then we get a skew

bracoid (G ,N) using the action ⊙ given by

r i s j ⊙ ηk = ηi+(−1)jk .
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The λ-function

Definition/Proposition

Given a skew bracoid (G , ◦,N,+,⊙), we define the map

λ : (G , ◦)→ Perm(N,+), sending g to λg , by

λg (η) = −(g ⊙ eN) + (g ⊙ η),

for g ∈ G and η ∈ N.

Then λ is in fact a homomorphism, with image in Aut(N,+). We call this

map the λ-function of the skew bracoid.
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Examples

If we are actually in a skew brace (G , ◦,G ,+,⊙) then

λg (h) = −(g ⊙ e) + (g ⊙ h)

= −(g ◦ e) + (g ◦ h)

= −g + g ◦ h,

which we recall agrees with the typical λ-function of the skew brace.

In (Dn,Cd) we have

λr i s j (η
k) = (r i s j ⊙ eN)

−1(r i s j ⊙ ηk)

= η−iηi+(−1)jk

= η(−1)jk .
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As a surjective 1-cocycle

Let π : G → N be the map taking g to g ⊙ eN , then as ⊙ is a transitive

action π is a surjective. We have

π(g) + λg (π(h)) = (g ⊙ e)− (g ⊙ e) + (g ⊙ (h ⊙ e))

= gh ⊙ e

= π(gh)

for all g , h ∈ G , i.e. π is then a surjective 1-cocycle for the action of G on

N by automorphisms via λ.

Conversely, given G and N groups, a homomorphism λ : G → Aut(N) and

a surjective 1-cocycle π : G → N, we can define an action of G on N via

g ⊙ η = π(g) + λg (η). With this action (G ,N) is a skew bracoid.
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In the Holomorph

Let (N,+) be a group and A be a transitive subgroup of

Hol(N,+) = N ⋊ Aut(N). Then (A,N) is a skew bracoid with the obvious

action of A on N.

Conversely, given a skew bracoid (G ,N) we can map G into Hol(N) via

g 7→ (g ⊙ eN)λg . The image of this map is then isomorphic to the

quotient G/ ker(⊙), where ker(⊙) = {g ∈ G | g ⊙ η = η for all η ∈ N}.

Example

Consider (G ,N) ∼= (Dn,Cd). Writing ι for inversion in N, we have

r i s j 7→ ηi ιj . Hence the image of G in Hol(N) is N ⋊ ⟨ι⟩. This is
isomorphic to G itself precisely when d = n.
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Ideals of a Skew Brace

Given a skew brace (G ,+, ◦), recall λg (h) = −g + g ◦ h.

Definition

Let (G ,+, ◦) be a skew brace. A subgroup I of (G ,+) is

a left ideal if it is closed under λG , this gives for free that I is a

subgroup of (G , ◦) and that g + I = g ◦ I for all g ∈ G ;

a strong left ideal if I is additionally normal in (G ,+);

an ideal if I is normal in both (G ,+) and (G , ◦).

As one would expect, to take a quotient we want an ideal of our skew

brace. Since cosets agree, we may simply take the quotient in the group

sense and recover a skew brace.
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A Partial Quotient

Instead let us attempt to quotient by merely a strong left ideal.

Take a skew brace (G ,+, ◦) and a strong left ideal I .

Recall I is normal in G with respect to +, so G/I makes sense as a

group with +.

We can also think of G/I as a ◦-coset space and let G act

(transitively) on G/I by left translation of cosets.

Writing ⊙ for this action, for all g , h, h′ ∈ G we have

g ⊙ (hI + h′I ) = g ⊙ (h + h′)I

= (g ◦ (h + h′))I

= (g ◦ h − g + g ◦ h′)I

= (g ◦ h)I − gI + (g ◦ h′)I

= (g ⊙ hI )− (g ⊙ eG I ) + (g ⊙ h′I ),

so that (G , ◦,G/I ,+,⊙) is a skew bracoid.
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Our example

Example

Take G = ⟨r , s⟩ ∼= Dn as before. We can define a second binary operation

on G by r i s j · rksℓ := r i+ks j+ℓ. Then (G , ·, ◦) is a skew brace with

(G , ◦) ∼= Dn, (G , ·) ∼= Cn × C2 and λ-function given by

λr i s j (r
ksℓ) = r−i s−j · (r i s j ◦ rksℓ) = r (−1)jksℓ.

Let d be some divisor of n and I = ⟨rd , s⟩. It is straightforward to check

that I is strong left ideal of (G , ·, ◦) and G/I = ⟨rI ⟩ ∼= Cd , so that

(G ,G/I ) is our familiar skew bracoid.
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A Natural Question

Question

Do all skew bracoids arise as a quotient of a skew brace by a strong left

ideal?

Thanks to Byott we have an example of a skew bracoid

(G ,N) ∼= (GL3(F2),C2 × C2 × C2) for which the only additive operation

on G giving (G ,+, ◦) a skew brace has (G ,+) simple. This means there

are no strong left ideals to quotient by, so this skew brace cannot directly

arise as a quotient as outlined.

A slightly less natural question

However, is there some larger (H,+, ◦) with strong left ideal I , such that

(H/ ker(⊙), ◦,H/I ,+,⊙) is isomorphic to (G ,N)?
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Setting

Let E/K be a finite Galois extension of fields with

L some intermediate field, so that L/K is

separable but not necessarily Galois. Write

(G , ◦) = Gal(E/K ) and S = Gal(E/L).

Definition

A Hopf-Galois structure on L/K is a K -Hopf

algebra H together with an action ∗ of H on L

such that

L is a H-module algebra;

the map j : L⊗K H → EndK (L) given by

j(x ⊗ h) : y 7→ x(h ∗ y) is an isomorphism.

E

G

S

L

K
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A (Very) Brief History of Hopf-Galois Theory

Chase and Sweedler [1969] introduce the study of Hopf-Galois theory with a

view to inseparable extensions of fields and ramified extensions of rings.

Greither and Pareigis [1987] characterise Hopf-Galois structures on separable

extensions using certain subgroups of Perm(G/S).

Byott [1996], following an observation by Childs [1989], gave a further

correspondence between this permutation setting and the holomorph.

Bachiller [2016] sets out a correspondence between braces and subgroups of

the holomorph and notes its relevance to Hopf-Galois theory.

Byott and Vendramin [2018] make the connection between Hopf-Galois

structures on Galois extensions and skew braces via their mutual connection

to regular subgroups of the holomorph.

Stefanello and Trappeniers [2023] realign the correspondence, making it a

bijection and giving more qualitative results.
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A Quick Note

Fact

Any skew bracoid (G ,N) can be written in the form (G ,G/S) where

S = StabG (eN). We have a bijection

gS ←→ g ⊙ eN

which we can use to transport the operation in N to the coset space G/S ;

notice that the identity coset, eGS , is then the identity in this group.

Under this bijection the action of G on G/S becomes left translation of

cosets via the operation in G .
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The correspondence

Theorem (M-L and Truman, 2024)

There is a bijective correspondence between

Hopf-Galois structures on L/K and

operations + such that (G , ◦,G/S ,+,⊙)
forms a skew bracoid, with eGS = eG/S , and

where ⊙ is left translation of cosets via ◦.

Explicitly, the Hopf-Galois structure coming from

(G ,G/S) is E [G/S ,+]G with action on L given by ∑
gS∈G/S

cgSgS

 [t] =
∑

gS∈G/S

cgSgS [t].

E

G

S

L

E [G/S ,+]G

K
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The Hopf-Galois Correspondence

Theorem (Greither and Pareigis, 1987)

Suppose H is a Hopf-Galois stucture on L/K . For a K -Hopf subalgebra H ′

of H define

Fix(H ′) = LH
′
= {x ∈ L | h ∗ x = ϵ(h)x for all h ∈ H ′}.

Then the map

Fix : {K -Hopf subalgebras of H} → {intermediate fields of L/K}

is injective and inclusion reversing.

But when is it also surjective?
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Ideals of a Skew Brace

Given a skew brace (G ,+, ◦), recall λg (h) = −g + g ◦ h.

Definition

Let (G ,+, ◦) be a skew brace. A subgroup I of (G ,+) is

a left ideal if it is closed under λG , this gives for free that I is a

subgroup of (G , ◦) and that g + I = g ◦ I for all g ∈ G ;

a strong left ideal if I is additionally normal in (G ,+);

an ideal if I is normal in both (G ,+) and (G , ◦).

As one would expect, to take a quotient we want an ideal of our skew

brace. Since cosets agree, we may simply take the quotient in the group

sense and recover a skew brace.
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Ideals of a Skew Bracoid and the HGC

Let (G ,G/S) be a skew bracoid and G ′ be a subgroup of G containing S .

Definition (For our purposes)

We say G ⊙ eG/S is

a left ideal of (G ,G/S) if it is closed under λG ;

an ideal of (G ,G/S) if G ′ ⊙ eG/S is additionally normal in G/S .

Theorem (M-L and Truman, 2024)

Let E [G/S ]G be a HGS on L/K , corresponding to (G ,G/S). Take G ′ as above

so that LG
′
is an intermediate field of L/K . Then

LG
′
occurs in the image of the HGC for E [G/S ]G ⇐⇒ G ′ ⊙ eG/S is a left

ideal of (G ,G/S).

we can form a quotient structure on LG
′
/K ⇐⇒ G ′ ⊙ eG/S is an ideal.
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The Hopf-Galois Correspondence for Our Example

Example

Take (G ,G/S) ∼= (Dn,Cd).

Any subgroup G ′ of G containing S = ⟨rd , s⟩ will be of the form

⟨r f , s⟩ for some f |d .

Then G ′ ⊙ eGS = {r if S | 0 ≤ i < f }.

Further λr i s j (r
kf S) = r (−1)jkf S ∈ G ′ ⊙ eGS so G ′ ⊙ eGS is closed

under λG .

From this or by inspection we see G ′ ⊙ eGS is a subgroup of G/S .

Hence LG
′
occurs in the image of the HGC for the Hopf-Galois

structure E [G/S ]G for all G ′ so the HGC is surjective in this case.

Since G/S is abelian each G ′ ⊙ eGS is additionally normal so we can

form a quotient Hopf-Galois structure on LG
′
/K again for every G ′.
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Open Questions

Stefanello and Trappeniers give various families of Hopf-Galois

structures for which the Hopf-Galois correspondence is surjective, can

we find such families in the separable case? We can show that so

called almost classical structures have this property from the skew

bracoid perspective but this was well known from Hopf-Galois theory

alone.

We would like some notions of products of skew bracoids. So far we

have an idea of an induced skew bracoid, coming from Hopf-Galois

theory, but only vague ideas of what a semi-direct or matched

product should entail.

Do skew bracoids have anything to do with solutions to the

Yang-Baxter equation? Yes! See [Colazzo, Koch, M-L, and Truman,

hopefully 2024?].
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Thank you for your attention!
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